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Abstract

The 3D non-isothermal creeping flow of nylon-6 in a bent square duct with uniform temperature is studied numer-

ically. The non-Newtonian characteristics of this fluid polymer are represented by a differential-type non-isothermal

White–Metzner model. Computational results are obtained by the elastic-viscous split-stress (EVSS) finite element

method, incorporating the streamline-upwind Petrov–Galerkin (SUPG) scheme. The generated thermal field is entirely

due to viscous heating. Essential flow characteristics, including temperature distribution in the flow field, are predicted.

The resulting average Nusselt numbers along the walls are obtained. Subsequently, the effects of flow-rate and geometry

are investigated.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow of a polymeric or viscoelastic fluid in a bent

square duct is of significant importance in polymer pro-

cessing. The study of such flows is thus of some signifi-

cance and has attracted a great deal of attention in the

literature.

There have been a number of studies on the case of

laminar flows of non-Newtonian (inelastic) fluids in

ducts. Hwang and Hong [1] analytically and experimen-

tally investigated the influence of variable viscosity on

the laminar heat transfer in a square duct for the con-

stant wall temperature condition with ethylene glycol.

They reported that the Nusselt numbers increased by

approximately 15–20% from the values of constant
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property fluid. Ahmadian et al. [2] numerically studied

the 3D laminar flow with and without partial solidifica-

tion of an initial molten polymer in square ducts with a

90� curve. The non-Newtonian characteristics of the

fluid polymer were represented by a differential-type

non-isothermal power-law model. The result of a larger

heat transfer coefficient at the outer boundary than at

the inner boundary was presented.

Turning to viscoelastic fluids, several researchers con-

ducted experimental studies on the flow through rectan-

gular ducts under laminar conditions. In 1971, Oliver

and Rao [3] experimentally found that viscoelastic fluids

in laminar flow through flattened tubes gave higher heat

transfer coefficients than Newtonian fluids of the same

Prandtl number. Mena et al. [4] also reported higher

heat transfer coefficients for a viscoelastic fluid in lami-

nar flow through rectangular ducts as compared to the

corresponding Newtonain fluid. He concluded that the
ed.
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Nomenclature

A cross-sectional area, m2

Cp heat capacity, kJ/kg �C
De Dean number

Dh hydraulic diameter, m

d rate-of-deformation tensor, s�1

N1 the primary normal-stress difference, N/m2

Nu local Nusselt number

Nu average Nusselt number of each wall at a

specified streamline location

p pressure, N/m2

Pe Peclet number

R corner radius, m

Re Reynolds number

S� dimensionless streamline coordinate

s the elastic part of the viscoelastic stress s,
N/m2

T �
b dimensionless bulk-mean temperature

ts the velocity along the streamline, m/s

We Weissenberg number

U mean inlet velocity, m/s

Greek symbols

$ gradient operator, m�1

q density, kg/m3

s the viscoelastic stress of the polymer liquid,

N/m2

s(1) the upper convected derivative of the visco-

elastic stress s, N/(m2 s)

d(1) the upper-convected derivative of the strain-

rate tensor, s�2

_c shear-rate tensor, s�1

_c shear-rate, s�1

_cc characteristic shear-rate, s�1

k relaxation-time, s

/i quadratic basic function

wi bilinear basic function

l

R ih

w
b

s r

Fig. 1. Flow geometry.
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laminar flow of viscoelastic fluids through non-circular

rectangular geometries is accompanied by secondary

flows caused by elastic effects which have significant ef-

fects on the heat-transfer enhancement. Hartnett and

Kostic [5] measured the local Nusselt numbers for aque-

ous polycrylamide solutions, viscoelastic fluids, in lami-

nar flow through a rectangular channel. The measured

values were found to be much higher than those of a

purely viscous fluid. They concluded that the heat trans-

fer enhancement might be due to the secondary flows

arising from elastic effect. Xie and Hartnett [6] did

experimental studies on the heat-transfer behavior for

two types of aqueous polymer solutions in a rectangular

channel. The measured Nusselt values for the two poly-

mer solutions were considerably higher than the values

for a corresponding in-elastic power-law fluid and high-

er than the experimental values for water.

The creeping flow of 3D non-isothermal viscoelastic

fluid in bent square ducts has not yet been studied

numerically. The objective of the present study is to

investigate the creeping heat-transfer behavior of this

type of flow numerically for a nylon-6 liquid using the

EVSS/SUPG finite element method. The mathematical

model used for this flow simulation is a differential-type

non-isothermal White–Metzner constitutive equation,

which describes the non-Newtonian behavior of nylon-

6. Since the Dean number [7], defined as De = Re(Dh/

R)0.5, is small for this type of flow, centrifugal force is

neglected in the momentum equation. Essential flow

characteristics, including temperature distribution in

the flow field, are predicted. The resulting average Nus-

selt numbers along the walls are obtained. Subsequently,

the effects of flow-rate and geometry are investigated.
2. Mathematical modelling

Fig. 1 illustrates the flow geometry of the present

problem. The dimensions used are as follows: l =

0.015 m, w = 0.002 m, h = 0.002 m, and Ri = 0.004 m.

The aspect ratio h/w is equal to 1. It is well known that

non-isothermal flow of a viscoelastic fluid is governed by

the following set of conservation and constitutive

equations.

Continuity equation:

r � t ¼ 0 ð1Þ
Momentum equation, neglecting body forces:

qðt � rÞt ¼ �rp þr � s ð2Þ

where s is the extra stress.

The total stress tensor is expressed as

r ¼ �pI þ s ð3Þ
where p is pressure and I is the unit tensor.

For fluids with constant density q, heat capacity Cp,

and thermal conductivity k, the energy equation is given

as



Table 1

Rheological data and material functions used in the non-

isothermal White–Metzner model for nylon-6

g ¼ gð _c; T Þ ¼ g0ðT Þ½1þ ðk1 _cÞ2�ðn�1Þ=2 q = 986 kg m�3

g0(T) = g0,ref exp[b1(1/T�1/Tref)] Cp = 1450 J kg�1 K�1

k0(T) = k1,ref exp[b2(1/T�1/Tref)] k = 0.25 W m�1 K�1

g0(Tw) = g0,ref = 368.7 N s m�2 n = 0.7678

w1ð _c; T Þ ¼ w1;0ðT Þ½1þ ðk2 _cÞ2�ðn
0�2Þ=2 b1 = 8327 K

w1,0(T) = w1,0,ref exp[b3(1/T�1/Tref)] b2 = 17300 K

k2(T) = k2,ref exp[b4(1/T�1/Tref)] b3 = 18630 K

w1,0(Tw) = w1,0,ref = 12.66 N s2 m�2 b4 = 5113 K

k1,ref = 0.01766 s n 0 = 1.2

k2,ref = 0.1455 s Tw = 535 K

Tref = 535 K
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qCpt � rT ¼ r � kðrT Þ þ s : d ð4Þ

where d = ($t + $tT)/2.
The non-isothermal White–Metzner equation used

by Finlayson [8] to model the non-isothermal flow of

nylon-6 is defined by the following equation, together

with the curve-fitted parameters and material functions

in Table 1.

sþ ksð1Þ ¼ g _c ð5Þ

The meaning of each term in Eq. (5) are summarized

as follows:

Upper convective derivative of the extra stress:

sð1Þ ¼ t � rs�rtT � s� s � rt ð6Þ

Viscosity function g ¼ gð _c; T Þ:
Relaxation-time function: k ¼ kð _c; T Þ:
The relaxation-time function can be obtained via the

following equation:

kð _c; T Þ ¼ w1ð _c; T Þ=2gð _c; T Þ ð7Þ

where w1ð _c; T Þ is the primary normal stress function.

The material functions kð _c; T Þ, gð _c; T Þ and w1ð _c; T Þ are

all temperature and shear-rate dependent. The shear-

rate dependence is described by the Cross model, while

the temperature dependence is of the Arrhenius type.

The velocity, stress and temperature profiles are con-

sidered to be fully developed at the inlet. For the outlet,

the velocity is established by solving the problem using

the corresponding in-elastic generalized Newtonian fluid

model with zero normal-force and heat-flux imposed at

the outlet. The wall temperature is constant throughout.

Outlet heat-flux is zero. Also, no slip boundary condition

is applied at the wall.
3. Numerical method

Recently, several finite element methods have been

developed to overcome the convergence difficulties

encountered when simulating 2D isothermal viscoelas-

tic flow problems. Marchal and Crochet [9] applied
the non-consistent/streamline-upwind method to dis-

cretize the constitutive equation for elastic-flow prob-

lems, and each element was subdivided into a 4 · 4

sub-element for stress analysis. This method showed

good behavior for highly elastic 2D isothermal flow

problems, but was expensive in terms of computer

time. Another method, called the elastic-viscous split-

stress (EVSS) finite element method, was proposed by

Mendelson et al. [10] in 1983 to simulate the 2D iso-

thermal flow of viscoelastic fluids with Newtonian vis-

cosity such as the Oldroyd-B fluids. This method

employs the splitting of the extra-stress into its viscous

and elastic terms, and a change of variables for the

momentum and the constitutive equations, yielding a

set of equations involving the velocity t, the pressure

p, and the new elastic-stress s. The rate-of-deformation

tensor d is also introduced as an additional unknown,

leading to a four-field (t,p, s,d) problem. In 1994, the

EVSS finite element method incorporating the stream-

line-upwind/Petrov–Galerkin technique (known as the

EVSS/SUPG finite element method) was proposed by

Debae et al. [11] and proved to be accurate and stable

for 2D isothermal viscoelastic flow problems with

smooth boundaries. In 1999, Wu and Ju [12] simulated

2D non-isothermal viscoelastic flow of a nylon-6

liquid past a cylinder between plates, using EVSS/

SUPG for a differential-type non-isothermal White–

Metzner fluid. They reported that the drag on the

cylinder decreases if temperature-thinning of the fluid

is considered.

In the present study, the 2D EVSS/SUPG is extended

to simulate the 3D non-isothermal creeping flow of

White–Metzner fluids through bent square-ducts. In

order to solve the present flow problem by this numeri-

cal method, the governing equations in EVSS form is

first derived as follows.

3.1. Dimensionless governing equations in EVSS form

In the EVSS formulation, the viscoelastic stress is

split into its elastic and viscous components:

s ¼ sþ 2gd. ð8Þ

where s denotes the elastic component of the viscoelastic

stress and 2gd represents the viscous component.

Upon substituting (s + 2gd) for s into Eqs. (2)–(5),

the governing equations in EVSS form become:

r � t ¼ 0 ð9Þ

t � rt ¼ r � ð�pI þ sþ 2gdÞ ð10Þ

qCpt � rT ¼ r � kðrT Þ þ ðsþ 2gdÞ : d ð11Þ

sþ k sð1Þ þ 2gdð1Þ
� �

¼ 0 ð12Þ

d � ðrtþrtÞT=2 ¼ 0 ð13Þ



Fig. 2. The finite element mesh used in the current simulation.
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When appropriate dimensionless variables are intro-

duced, the dimensionless governing equations can be

obtained as follows:

r� � t� ¼ 0 ð14Þ

Ret
� � r�t� ¼ r� � ð�p�I þ s� þ 2g�d�Þ ð15Þ

Pet
� � r�T � ¼ r�2T � þ Brðs� þ 2g�d�Þ : d� ð16Þ

s� þ W ek
� s�ð1Þ þ 2g�d�

ð1Þ

� �
¼ 0 ð17Þ

d� � ðr�t� þ r�t�TÞ=2 ¼ 0 ð18Þ

where the dimensionless variables are defined as: x� =

x/w, t� = t/U, $� = w$, g� = g/g0,ref, T� = (T � Tw)/

(Tb�Tw), p
� = pw/Ug0,ref, d� = wd/U, and s� = sw/Ug0,ref.

Tb is conveniently defined as: Tb = Tw + 1(K).

In these equations, the Reynolds number, Weiss-

enberg number, Peclet number, and Brinkman are de-

fined as:

Re ¼ qUw=g0;ref ð19Þ

W e ¼ Uk0;ref=w ð20Þ

Pe ¼ qCpwU=k ð21Þ

Br ¼ g0;refU
2=kðT b � T wÞ ð22Þ

where g0,ref and k0,ref are the viscosity and relaxation-

time constant at zero- shear-rate and at reference

temperature.

3.2. Weak formulation of the dimensionless governing

equations

The dimensionless field variables are interpolated

within each element by

t� ¼
XN¼27

i¼1

/it
�
i p� ¼

XM¼9

i¼1

wip
�
i

s� ¼
XM¼9

i¼1

wis
�
i d� ¼

XM¼9

i¼1

wid
�
i

T � ¼
XN¼27

i¼1

/iT
�
i

where t�i , p
�
i , s

�
i , d

�
i , T

�
i are nodal values and /i, wi are

tri-quadratic and tri-linear basic functions, respectively.

Following the traditional Galerkin�s manipulations,

the weak form of the dimensionless governing Eqs.

(14), (15), and (18) can be derived as follows:

Z
X
wiðr� � t�ÞdX ¼ 0 ð23Þ
Z
X
½/iðRe t

� � r�t�Þ þ r�/i � ð�p�I þ s� þ 2g�d�Þ�dX

�
Z
A
/inð�p�I þ s� þ 2g�d�ÞdA ¼ 0 ð24Þ

Z
X
wi½d� � ðr�t� þ r�t�TÞ=2�dX ¼ 0 ð25Þ

The traditional Galerkin method is known to be

inappropriate when the convective terms in the hyper-

bolic constitutive equations become dominant as the

Weissenberg number increases. The streamline-upwind/

Petrov–Galerkin (SUPG) technique proposed by Debae

et al. is therefore applied to the constitutive equation

(17). In this technique, an additional weighing function

ð�k�t�=t� � t�Þ � r�wi is applied to all the terms of the con-

stitutive equation. The dimensionless �k
�
is proposed in

this study as:

�k
� ¼ ½ðt�nh�nÞ

2 þ ðt�vh�vÞ
2 þ ðt�gh�gÞ

2�=2 ð26Þ

in which the definition of dimensionless velocity compo-

nents ðt�n; t�v; t�gÞ at the element center and element char-

acteristic lengths ðh�n; h�v; h�gÞ are defined in [13]. Hence,

the weak form of Eq. (17) is then obtained as

Z
X
½wi þ ð�k�t�=t� � t�Þ��wi�

� ½s� þ W ek
�ðs�ð1Þ þ 2g�d�

ð1ÞÞ�dX ¼ 0. ð27Þ

Due to the relatively high Peclet of this problem,

the streamline-upwind Petrov–Galerkin formulation

(SUPG) developed by Brooks and Hughes [14] is used

to suppress the undesirable oscillations in the calcula-

tion of the temperature fields. To solve the equation

by this method, an additional weighing function for-

mulation ð~k�t�=t� � t�Þ � r�/i is applied to all terms of

the energy Eq. (16), where ~k
�
used in this paper is defined

as:

~k
� ¼ ~nt�nh

�
n þ ~vt�vh

�
v þ ~gt�gh

�
g

� �
=2 ð28Þ

where the definitions of t�n, t�v, t�g, h�n, h�v and h�g are

the same as those defined in Eq. (26). Consequently,

the following weak forms are finally obtained:
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Z
X
f/i½Pe; t

� � r�T � � Brð�p�I þ s� þ 2g�d�Þ : d��

þ r�/i � r�T �gdX�
Z
A
/in � r�T � dA ¼ 0 ð29Þ

where /0
i ¼ /i þ ð~k�t�=t� � t�Þ � r�/i.

Since the integrals in Eqs. (23)–(25), (27) and (29) are

integrals of polynomial functions, they may be readily
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Fig. 3. Dimensionless temperature contours in the cross-section alo
evaluated numerically using Gaussian quadrature. The

above discretization processes lead to a system of non-

linear equations of the form

Kðx�Þx� ¼ f � ð30Þ

where K(x�) is global stiffness maxtics, f � is the force

vector; x� is the unknown variable vector.
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The Newton–Raphson iteration method is employed

to solve the above set of nonlinear equations. Due to the

sparseness and asymmetry of the global stiffness matrix,

the biconjugate gradient stabilized (BiCGStab) method

[15] has been developed to compute all the unknowns

at each iteration step. Convergence is considered to be

achieved when the relative error of each of the dimen-

sionless variables is less than 10�4.
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Fig. 4. Effect of flow-rate on the Nu distributions along the

outer-wall.

Fig. 5. Effect of flow-rate on the Nu distributions along the

inner-wall.
4. Results and discussion

The numerical results for the present problem of

creeping heat-transfer behavior of a nylon-6 liquid

through bent square ducts are presented in this section.

The finite-element mesh used for the computation do-

main is shown in Fig. 2. The local Nusselt number can

be defined as the dimensionless temperature gradient

[16] at the wall, and the average Nusselt number Nu is

the Nusselt number averaged over the width of each wall

at a specified streamline location. As indicated in Fig. 1,

s is the streamline coordinate, r is the coordinate normal

to the streamline, and b is the coordinate normal to

coordinate s and r. S�, r� and b� are the corresponding

dimensionless coordinates defined as:

S� ¼ S=w; b� ¼ b=w and r� ¼ r=w ð31Þ

For convenience, we set S� = 0 at the entrance of the

curved section of the duct.

The generated thermal field is entirely due to viscous

heating. Dimensionless temperature contours in the

cross-section along the streamline are plotted in Fig.

3(a)–(e) for the characteristic shear-rate, defined as
_cc ¼ U=w, of _cc ¼ 10. As the fluid flows through the

channel, it is subjected to strong shear in the near-wall

region due to the relatively high shear-rate of the flow.

As a result, the temperature rises rapidly in this region.

The dissipation heat is convected downstream along the

channel, with the maximum temperature occurring at

the outlet of the channel near the outer wall, due to

the high Peclet number and high shear-rate. By con-

trast, the temperature near the channel center-line region

is relatively low. This phenomenon holds for _cc ranging
from 5 to 20 in this study.

The creeping heat-transfer behavior of this flow

problem was studied. Fig. 3 shows the temperature con-

tours in the cross-section along the streamline for the

characteristic shear-rate of _cc ¼ 10. Upstream, the tem-

perature near the outer and inner walls are quite similar.

Fig. 3(a) shows this phenomenon at dimensionless

streamline locations S� = �5. As the fluid approaches

the turn, temperature near the outer wall becomes a little

higher than near the inner wall. In the curving section,

the temperature difference between outer and inner walls

is found to be significant, as seen in Fig. 3(b) at 15� rel-
ative to the start of the turn, in Fig. 3(c) at 60� relative
to the start of the turn, and in Fig. 3(d) at the outlet of

the turn. At a small distance after the curve, the temper-

ature along the outer wall is also found to be higher than

along the inner wall, as seen in Fig. 3(e) at S� = 6.0.

4.1. Effect of flow-rate

The average Nusselt number Nu along the four chan-

nel walls are shown in Figs. 4–6 for three flow-rates.

Along the outer wall for the curved section, Nu is seen

to undergo a dip when leaving the turn for all three
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flow-rate cases, as seen in Fig. 4. This dip is due to the

flow tending to move away from the downstream

straight wall, resulting in lower velocity gradient. As

seen in Fig. 5 along the inner wall at the beginning of

the curved section, Nu undergoes a decrease before

resuming its increasing trend. This decrease is due to

much lower local heat dissipation, which is caused by

a lower velocity gradient since the flow tends to move

away from the inner curved wall at the entrance. The rel-

ative difference of Nu between outer and inner walls is

plotted in Fig. 7. It is obvious that for low flow-rates,
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Fig. 6. Effect of flow-rate on the Nu distributions along the top
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Fig. 7. Comparisons of Nu outer and inner walls for three

values of flow-rate.
Nu is approximately the same for both curved walls.

However, as the flow rate increases, the Nu along the

outer wall becomes significantly higher than that along

the inner wall.

In the square-duct geometry of this study for the

three flow-rates, Nu values along both top and bottom

walls are virtually identical, increase with distance along

the channel, for all three flow-rates cases, as shown in

Fig. 6. The average Nusselt number Nu along the four

channel walls are shown in Fig. 8 for the case of _cc equal
to 10. The value of Nu along both top and bottom walls
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for _cc ¼ 10.
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Fig. 9. Effect of corner radius on the Nu distributions along the

outer-wall.
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is smaller than the Nu along the outer wall. This phe-

nomenon holds for _cc ranging from 5 to 20 in this study.

4.2. Effect of corner radius

In the curved section, Nu along the four walls at any

angle measured relative to the start of the turn are pre-

dicted to be greater for larger radii, as shown in Figs.

9–11. The effect of corner radius on Nu is only significant

in the curved section. For Nu along the top and bottom

walls illustrated in Fig. 11, it is seen that the effect of cor-

ner radius is insignificant.
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Fig. 10. Effect of corner radius on the Nu distributions along

the inner-wall.
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Fig. 11. Effect of corner radius on the Nu distributions along

the top and bottom walls.
5. Conclusion

A numerical investigation based on EVSS/SUPG

finite element method is performed to study the 3D

non-isothermal creeping flow of a nylon-6 liquid in

square- ducts with uniforn temperature. The constitutive

equation used is a differential-type non-isothermal

White–Metzner model. Since the Dean number is small

for this type of flow, centrifugal force is neglected in

the momentum equation. The generated thermal field

is entirely due to viscous heating.

As the fluid flows through the channel, it is subjected

to strong shear in the near-wall region, resulting in rapid

temperature rise in this region. The dissipation heat is

convected downstream along the channel, with the max-

imum temperature occurring at the outlet of the channel

near the outer wall, due to the high Peclet number and

high shear-rate of this flow. By contrast, the temperature

near the channel center-line region is relatively low.

Along the outer wall of the curved section, Nu is seen

to undergo a dip when leaving the turn. Nu along the

inner wall undergoes a decrease before resuming its

increasing trend when fluid enters the curved section.

For the square-duct geometry of this study, the value

of Nu for both top and bottom walls is virtually

identical, and is smaller than the Nu along the outer

walls.

The effects of flow-rate, and channel geometry on

the average Nusselt number along the duct walls. The

effect of increasing flow-rate is seen to increase Nusselt

number. Nu is approximately the same for both curved

walls for low flow-rates. However, for high flow-

rates, the Nu along the outer wall becomes signifi-

cantly higher than that along the inner wall. The

effect of corner radius on Nu is only significant in

the curved section. Far downstream of the channel,

these thermal properties are little affected by the corner

radius.
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